Lesson No. 12

Extended Multiplication

We use extended shifting and extended addition to formulate our algorithm to do extended multiplication. The multiplier is still stored in 16bits since we only need to check its bits one by one. The multiplicand however cannot be stored in 16bits otherwise on left shifting its significant bits might get lost. Therefore it has to be stored in 32bits and the shifting and addition used to accumulate the result must be 32bits as well.

	
	Example 4.2

	01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26
	; 16bit multiplication

[org 0x0100]

 jmp start

multiplicand: dd 1300 ; 16bit multiplicand 32bit space

multiplier: dw 500 ; 16bit multiplier

result: dd 0 ; 32bit result

start: mov cl, 16 ; initialize bit count to 16

 mov dx, [multiplier] ; load multiplier in dx

checkbit: shr dx, 1 ; move right most bit in carry

 jnc skip ; skip addition if bit is zero

 mov ax, [multiplicand]

 add [result], ax ; add less significant word

 mov ax, [multiplicand+2]

 adc [result+2], ax ; add more significant word

skip: shl word [multiplicand], 1

 rcl word [multiplicand+2], 1 ; shift multiplicand left

 dec cl ; decrement bit count

 jnz checkbit ; repeat if bits left

 mov ax, 0x4c00 ; terminate program

 int 0x21

	05-07

10

15-18

20-21
	The multiplicand and the multiplier are stored in 32bit space while the multiplier is stored as a word.

The multiplier is loaded in DX where it will be shifted bit by bit. It can be directly shifted in memory as well.

The multiplicand is added to the result using extended 32bit addition.

The multiplicand is shifted left as a 32bit number using extended shifting operation.

The multiplicand will occupy the space from 0103-0106, the multiplier will occupy space from 0107-0108 and the result will occupy the space from 0109-010C. Inside the debugger observe the changes in these memory locations during the course of the algorithm. The extended shifting and addition operations provide the same effect as would be provided if there were 32bit addition and shifting operations available in the instruction set.

At the end of the algorithm the result memory locations contain the value 0009EB10 which is 65000 in decimal; the desired answer. Also observe that the number 00000514 which is 1300 in decimal, our multiplicand, has become 05140000 after being left shifted 16 times. Our extended shifting has given the same result as if a 32bit number is left shifted 16 times as a unit.

There are many other important applications of the shifting and rotation operations in addition to this example of the multiplication algorithm. More examples will come in coming chapters.

1.1. Bitwise Logical Operations

The 8088 processor provides us with a few logical operations that operate at the bit level. The logical operations are the same as discussed in computer logic design; however our perspective will be a little different. The four basic operations are AND, OR, XOR, and NOT.

The important thing about these operations is that they are bitwise. This means that if “and ax, bx” instruction is given, then the operation of AND is applied on corresponding bits of AX and BX. There are 16 AND operations as a result; one for every bit of AX. Bit 0 of AX will be set if both its original value and Bit 0 of BX are set, bit 1 will be set if both its original value and Bit 1 of BX are set, and so on for the remaining bits. These operations are conducted in parallel on the sixteen bits. Similarly the operations of other logical operations are bitwise as well.

AND operation

	X
	Y
	X and Y

	0
	0
	0

	0
	1
	0

	1
	0
	0

	1
	1
	1

AND performs the logical bitwise and of the two operands (byte or word) and returns the result to the destination operand. A bit in the result is set if both corresponding bits of the original operands are set; otherwise the bit is cleared as shown in the truth table. Examples are “and ax, bx” and “and byte [mem], 5.” All possibilities that are legal for addition are also legal for the AND operation. The different thing is the bitwise behavior of this operation.

OR operation

	X
	Y
	X or Y

	0
	0
	0

	0
	1
	1

	1
	0
	1

	1
	1
	1

 OR performs the logical bitwise “inclusive or” of the two operands (byte or word) and returns the result to the destination operand. A bit in the result is set if either or both corresponding bits in the original operands are set otherwise the result bit is cleared as shown in the truth table. Examples are “or ax, bx” and “or byte [mem], 5.”

XOR operation

	X
	Y
	X xor Y

	0
	0
	0

	0
	1
	1

	1
	0
	1

	1
	1
	0

 XOR (Exclusive Or) performs the logical bitwise “exclusive or” of the two operands and returns the result to the destination operand. A bit in the result is set if the corresponding bits of the original operands contain opposite values (one is set, the other is cleared) otherwise the result bit is cleared as shown in the truth table. XOR is a very important operation due to the property that it is a reversible operation. It is used in many cryptography algorithms, image processing, and in drawing operations. Examples are “xor ax, bx” and “xor byte [mem], 5.”

NOT operation

NOT inverts the bits (forms the one’s complement) of the byte or word operand. Unlike the other logical operations, this is a single operand instruction, and is not purely a logical operation in the sense the others are, but it is still traditionally counted in the same set. Examples are “not ax” and “not byte [mem], 5.”

1.2. Masking Operations

Selective Bit Clearing

Another use of AND is to make selective bits zero in its destination operand. The source operand is loaded with a mask containing one at positions which are retain their old value and zero at positions which are to be zeroed. The effect of applying this operation on the destination with mask in the source is to clear the desired bits. This operation is called masking. For example if the lower nibble is to be cleared then the operation can be applied with F0 in the source. The upper nibble will retain its old value and the lower nibble will be cleared.

Selective Bit Setting

The operation can be used as a masking operation to set selective bits. The bits in the mask are cleared at positions which are to retain their values, and are set at positions which are to be set. For example to set the lower nibble of the destination operand, the operation should be applied with a mask of 0F in the source. The upper nibble will retain its value and the lower nibble will be set as a result.

Selective Bit Inversion

XOR can also be used as a masking operation to invert selective bits. The bits in the mask are cleared at positions, which are to retain their values, and are set at positions, which are to be inverted. For example to invert the lower nibble of the destination operand, the operand should be applied with a mask of 0F in the source. The upper nibble will retain its value and the lower nibble will be set as a result. Compare this with NOT which inverts everything. XOR on the other hand allows inverting selective bits.

Selective Bit Testing

AND can be used to check whether particular bits of a number are set or not. Previously we used shifting and JC to test bits one by one. Now we introduce another way to test bits, which is more powerful in the sense that any bit can be tested anytime and not necessarily in order. AND can be applied on a destination with a 1-bit in the desired position and a source, which is to be checked. If the destination is zero as a result, which can be checked with a JZ instruction, the bit at the desired position in the source was clear.

However the AND operation destroys the destination mask, which might be needed later as well. Therefore Intel provided us with another instruction analogous to CMP, which is non-destructive subtraction. This is the TEST instruction and is a non-destructive AND operation. It doesn’t change the destination and only sets the flags according to the AND operation. By checking the flags, we can see if the desired bit was set or cleared.

We change our multiplication algorithm to use selective bit testing instead of checking bits one by one using the shifting operations.

	
	Example 4.3

	01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
	; 16bit multiplication using test for bit testing

[org 0x0100]

 jmp start

multiplicand: dd 1300 ; 16bit multiplicand 32bit space

multiplier: dw 500 ; 16bit multiplier

result: dd 0 ; 32bit result

start: mov cl, 16 ; initialize bit count to 16

 mov bx, 1 ; initialize bit mask

checkbit: test bx, [multiplier] ; move right most bit in carry

 jz skip ; skip addition if bit is zero

 mov ax, [multiplicand]

 add [result], ax ; add less significant word

 mov ax, [multiplicand+2]

 adc [result+2], ax ; add more significant word

skip: shl word [multiplicand], 1

 rcl word [multiplicand+2], 1 ; shift multiplicand left

 shl bx, 1 ; shift mask towards next bit

 dec cl ; decrement bit count

 jnz checkbit ; repeat if bits left

 mov ax, 0x4c00 ; terminate program

 int 0x21

	12

22-24
	The test instruction is used for bit testing. BX holds the mask and in every next iteration it is shifting left, as our concerned bit is now the next bit.

We can do without counting in this example. We can stop as soon as our mask in BX becomes zero. These are the small tricks that assembly allows us to do and optimize our code as a result.

Inside the debugger observe that both the memory location and the mask in BX do not change as a result of TEST instruction. Also observe how our mask is shifting towards the left so that the next TEST instruction tests the next bit. In the end we get the same result of 0009EB10 as in the previous example.

Exercises

1. Write a program to swap every pair of bits in the AX register.

2. Give the value of the AX register and the carry flag after each of the following instructions.

stc
mov ax, <your rollnumber>
adc ah, <first character of your name>
cmc
xor ah, al
mov cl, 4
shr al, cl
rcr ah, cl

3. Write a program to swap the nibbles in each byte of the AX register.

4. Calculate the number of one bits in BX and complement an equal number of least significant bits in AX.

HINT: Use the XOR instruction

5. Write a program to multiply two 32bit numbers and store the answer in a 64bit location.

6. Declare a 32byte buffer containing random data. Consider for this problem that the bits in these 32 bytes are numbered from 0 to 255. Declare another byte that contains the starting bit number. Write a program to copy the byte starting at this starting bit number in the AX register. Be careful that the starting bit number may not be a multiple of 8 and therefore the bits of the desired byte will be split into two bytes.

7. AX contains a number between 0-15. Write code to complement the corresponding bit in BX. For example if AX contains 6; complement the 6th bit of BX.

8. AX contains a non-zero number. Count the number of ones in it and store the result back in AX. Repeat the process on the result (AX) until AX contains one. Calculate in BX the number of iterations it took to make AX one. For example BX should contain 2 in the following case:

AX = 1100 0101 1010 0011 (input – 8 ones)

AX = 0000 0000 0000 1000 (after first iteration – 1 one)

AX = 0000 0000 0000 0001 (after second iteration – 1 one) STOP

